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The subsonic vortex flow behind the detached or attached shock wave (SW) which arises during the 

supersonic planar flow around symmetric bodies of finite thickness is considered. As in [l, 21, the 

fundamental proofs rest on an analysis of the lines of constant pressure (isobars) in the subsonic domain 

between the body, the SW and the sonic line joining the SW to the body. 

THE IMPOSSIBILITY of certain schemes of planar vortex flow, in particular, with local supersonic 
zones is proved in Sec. 1. 

The mutual relationship between the subsonic segments of the body and the SW is investigated in 
Sec. 2. It is proved that, in the case of non-negative angles of inclination of the wall, the angles of 
inclination of the velocity vector behind the SW are also non-negative, the angles of inclination of 
the SW do not exceed n/2 and, in the case of a detached shock wave, the pressure increases 
monotonically along the segment of the axis of symmetry between the SW and the body. If the wall 
of the body is nonconcave or the angles of inclination of the wall exceed the limiting angle for the 
shock polar, the subsonic segment of the SW is concave and, here, the pressure decreases 
monotonically along it. 

The circumfluence of a finite wedge with a salient point of the generatrix is considered in Sec. 3. It 
is proved that the sonic line (SL) joining the body to the shock wave emerges from the salient point 
of the generatrix and also that the pressure decreases monotonically along the wall. 

1. Let us consider the planar vortex flow of an ideal (nonviscous and nonthermally conducting) 
gas with an adiabatic index x which is described by the equations 

P4'8L = -PN, PQ2@N = -PL of2 - 1) (1.1) 

where p and p are the pressure and density, q and 8 are the modulus and the angle of inclination of 
the velocity vector, M is the Mach number and OL, p L, ON and pN are derivatives calculated along a 
flow line and along the normal to it. 

As a consequence of (l.l), the expression for the derivative 8 calculated along the isobars is [l] 

81 = -p,, (1 - M2 sin2 /3)/(pq2) (1.2) 
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where p,, is the derivative calculated along a normal to the isobar and p is the angle between the 
isobar and the velocity vector. 

When M s 1, the expression in parentheses is non-negative which makes relationship (1.2) useful 
in the study of subsonic flows. 

Allowing for the possibility that there are branching points in subsonic flows [3], it will 
subsequently be understood that an isobar is a line of constant pressure which is always a boundary 
of a selected domain of increased or reduced pressure. In this case, the sign of p,, does not change 
along isobars and the equality pn = 0 is only possible at the above-mentioned isolated branching 
points. By simply using the continuity of the pressure when M 6 1, it can be shown that an isobar 
defined in this manner cannot break off within a subsonic flow domain. Actually, let the line 
p = const be broken off at a certain internal point z or the sign of pn change. An analysis of the 
pressure change along the neighbourhood of a sufficiently small radius with a centre at the point z 
then leads to a contradiction. 

It follows from relationship (1.2) that the value of the angle 0 changes monotonically along the 
isobars at each point of which M=G 1 [l]. 

This fact is indicative of the following properties of subsonic flows which will subsequently be 
made use of. 

Planar vortex flows cannot contain the following types of isobars at each point of which M G 1. 
1. Closed isobars, excluding flows with closed stream lines or with internal stagnation points 

]I, 41. 
2. Segments of isobars starting and finishing on a subsonic section of an SW [I]. The 

neighbourhood of a point is which the SW is perpendicular to the approach stream is also an 
exception subject to the condition that the SW at this point becomes convex towards the subsonic 
flow behind the SW [2]. 

3. Segments of isobars with terminal points in the straight wall, excluding flows with a stagnation 
point on the wall between these terminal points. 

The assumption that there are no local supersonic zones in the domain under consideration plays 
an important role in investigating subsonic flows using isobars [l, 21. As it turns out, the properties 
of subsonic flows noted above provide additional grounds for this assumption. 

In vortex flows which are sufficiently close to being vortex-free when the entropy and the total 
enthalpy are close to constants, the isobars are sufficiently close to the lines M = const. It may 
therefore be asserted that there cannot be any local supersonic zones bounded by closed sonic lines 
or by the sonic lines in conjunction with a straight wall or SW in such flows. 

Actually, in the opposite case isobars close to sonic lines exist at each point M s 1 which are 
closed or which reach the straight wall or the shock wave. However, this contradicts the properties 
of subsonic flows which have been considered above. 

The following result is also concerned with the impossibility of local supersonic zones but it has no 
longer been assumed in its formulation that the flow is close to being vortex-free. 

Theorem 1. A continuous planar vortex flow is considered in the neighbourhood of a non-convex 
wall my1 (Fig. 1) along which the angle 8 does not decrease. A subsonic flow runs from the left into 
the sonic line UC and a supersonic flow is realized on the right from ac. Each streamline intersects UC 
only once, that is, the stream function + does not decrease along UC and, finally, the total pressure 
pO(+) is a nondecaying function of $. (The latter condition is satisfied, for example, close to the wall 
of a symmetrical body around which there is a flow with the formation of a detached SW.) 

It is asserted that, in the sonic line UC, it is impossible to choose a point t from which an isobar ti 
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FIG. 1. 

and a characte~stic of a second family q would emerge which reach subsonic and supersonic 
segments of the wall mn, respectively. (This fact is known in the case of vortex-free flow 151.) 

Proof. Let us assume that such a point t exists. Then, the following compatibility condition is 
satisfied along the characteristic of the second family G 

d0 _2$g(M,x)=O, g(Msx)~ ‘F 
Allowing for the fact that p = po(+)f(M, x), where f(M, z) is an unknown function, we have 

d6- +++)g(M,x)= 0 

Integrating, we get 

g fJf* xl 
PO (9) po fsf dll, 

0 

h(M,x)= J/s arctg 1/J&+(W-1) -arctg1/M2 

By taking account of the fact that the derivative po' ($>30 according to the condition of the 
theorem and that M> 1, h(M, X) >O, we find that 0i< Or, that is, the angle 8 is smaller at the point j 
than at the point t. 

Let us now consider the isobar fi. It folIows from the fact that the pressure does not decrease 
along ac that the normal derivative pn 6 0 on ti. consequently, according to (1.2), Bi > Br . 

Finally, we have 0j < 0,< Bi. However, this contradicts the condition of the theorem, which it was 
required to prove. 

Remark. As in Sec. 3 of this paper, proof of the fact that the isobar under investigation, which emerges from 
a point on the sonic line, actually reaches the segment of the wall being considered must precede the 
application of Theorem 1. We also note the inapplicability in Theorem 1 of the relationship describing the 
change in the angle t3 along the sonic line [6] 

0, = 
42 
--f- co.9 cp - 

P, ctg cp 
f?P 
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FIG. 2. 

where 8,) ps and q7 are derivatives calculated along the sonic line and along the normal to the sonic line and cp is 
the angle between the sonic line and the velocity vector. 

In fact, it follows from the condition of the theorem that cps~/2 in the neighbourhood of the wall mn. 
Hence, the terms on the right-hand side have different signs. 

2. We now consider the upper half of the planar symmetric flow around a body of finite width Oh 
(Fig. 2) by a uniform, horizontal supersonic flow of an ideal (nonviscous and nonthermally 
conducting) gas with an adiabatic index X. Either a detached SW dz (Fig. 2a) or an attached SW Oz 
(Fig. 2b) is formed in front of the body. The subsequent treatment will be limited by the 
assumptions that subsonic flows without local supersonic zones and also zones with closed stream 
lines are realized in the domains Odca and Oca, where UC is the sonic line. The available data, 
including those obtained in Sec. 1, suggest that, in the case of a wide class of sufficiently smooth 
bodies, the above-mentioned assumptions are completely justified. 

The flow diagram shown in Fig. 2(a) is realized in the case of blunt bodies and a wide class of 
pointed bodies. The flow in Fig. 2(b) . IS realized far less frequently. Certain results appertaining to 
this question are presented in [ 1,2]. 

The values of p and 0 on the shock waves dz and Oz are linked by the shock polar shown in Fig. 3. 
The polar is symmetric with respect to the 0 = 0 axis. M = 1 at the points c and c- while above 
(below) these points M< 1 (Mb 1). Finally, the entropy s decreases as the pressure p falls on the 
shock polar. 

In studying the subsonic flows Odca and Oca (Fig. 2), one of the questions which arises is under 
what conditions do the points of just the right-hand half of the shock polar correspond to the 
segments dc and UC? The following theorem is concerned with this question. 

Theorem 2. Let the inclination of the wall be non-negative on the subsonic segment of the body, 
that is, 8 20 on Oa. The following then hold. 

1. 8 >0 on the subsonic sections of the shock waves cd and UC and, as a consequence, the 
inclination of the shock wave does not exceed 1~12 at each point of dc and UC. 

k 

8 
0 

FIG. 3. 
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2. In the case of a detached shock wave, the pressure increases monotonically along an interval of 
the d0 axis of symmetry. 

Proof. Let us assume that the opposite is true. Let there be points on dc and Oc at which 0<0. 
Then, by taking account of the continuity of p in subsonic flows and, as a consequence, the 
continuity of p and 8 along dc and Oc, we can choose a point t on dc or Oc at which 0 < 0 and there is 
an increase in 0 and p as this point moves along dc or Oc. Consequently, the normal derivative 
pn 3 0 on the isobar which emerges from point t into the subsonic zone and the angle 8 must decrease 
along it. Finally, the isobar cannot reach the body, the axis of symmetry or the shock wave. It also 
cannot reach the sonic line, since p <pc <pt in the sonic line [21. This inequality follows from the fact 
that Ms 1 on dc and Oc according to the condition of the problem as a result of which the condition 
po(+) 6po(&) for the total pressure is completely valid on dc and Oc and, this means, also on the 
sonic line UC. 

The resulting contradiction also proves the first part of the theorem. 
Let us now assume that an acceleration of the flow is possible at certain points of the interval do. 

We can then choose a point t at which p >pc and px < 0. p,, a0 on the isobar emerging from this 
point and, consequently, 8 decreases along the isobar as a result of which the isobar cannot reach 
the shock wave, the axis of symmetry or the wall of the body. The isobar cannot reach the sonic line 
since p >pc on the isobar. The second part of the theorem is thereby proved. 

Remark. Isobars, for which p>pc, have been used in the proof of the theorem. It is therefore sufficient that 
the inequality 0 2 0 appearing in the condition of the theorem should only be satisfied to the left of the isobar 
ca* joining point c to the wall. An analysis of the isobar ca* shows that, at the point a*, we have M<l, 
0> 0,>0. In particular, in the case of nonconcave bodies for which the angle 8 cannot increase during a 
displacement to the right along the wall, to the left of the point a* we have 0>8,>0. In other words, the 
theorem is automatically satisfied in the case of such bodies. We also note that, during the flow around 
nonconcave bodies, according to [l, 21, an attached shock wave with a subsonic flow behind it is only possible 
for a narrow range of values of 0s, the angle of taper: 8, < 00 < 0 k, where flk is the limiting angle of the shock 
polar. 

The following theorem holds in the case of nonconcave bodies. 

Theorem 3. During the flow around nonconcave bodies, the pressure p cannot increase along the 
subsonic segments dc and Oc of the shock wave and, as a consequence, the inclination of the shock 
waves also does not increase along these segments. In other words, the segments dc and Oc are 
nonconcave as are the bodies around which the flow occurs. 

Proof. We recall that Theorem 2 holds in the case of the bodies being considered, that is, 0 S- 0 on 
dc and Oc and the pressure does not decrease along do. Let us now assume that an increase in the 
pressure is possible on dc and Oc. It follows from this and also from the assumption that MC 1 on dc 
and Oc that there exists at least one point f where there is a local pressure maximum. 

In the neighbourhood of this point, let us choose two points t + and t - with different values of p 
and 0 and with different signs of the derivatives pn and 8, on the isobars emerging from these points. 
On the isobar emerging from the point t + (it is located closer to the sonic line), p,, s 0 and & 2 0 
while, on the isobar emerging from the point t-, we havep n > 0,6, G 0. Neither of these isobars can 
reach the shock wave in the interval d0 of the axis of symmetry (a consequence of Theorem 2) nor 
can they reach the sonic line [2]. Consequently, they must reach the body at the points z+ and z-, 
respectively. We find from this that the angle 0 is greater at the point Z+ than at the point z-. 
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Furthermore, this is not excluded on a nonconcave wall since the point z+ is located to the right of 
the point z-. This contradiction proves the theorem. 

As it turns out the nonconcavity of the subsonic segment of the shock wave can be proved when 
other conditions are imposed on the geometry of the body. The following theorem holds. 

Theorem 4. If the condition 0 2 t!rk is satisfied at each point of the body to the left of the isobar cu* 
emerging from the sonic point of the shock wave, then the pressure does not increase along the 
subsonic section of the shock wave and, as a consequence, this section of the shock wave is concave. 

The proof follows directly from an analysis of the isobars emerging from the points of the subsonic 
section of the shock wave at which, according to the assumption, the pressure increases. The point 
t- from the proof of Theorem 3 may serve as an example. 

In particular, bodies with nose cones and possibly also concave cones along which 0 >Bk and 
which are joined through an angular point to the horizontal wall correspond to Theorem 4. 

In the case of polytropic gases f& is only insignificantly greater than 8,. It may therefore be 
assumed that the majority of bodies which satisfy Theorem 3 also satisfy Theorem 4 but the converse 
is not true. 

Remark. The form of the shock arising during the how around convex bodies has previously been studied in 
[7]. In the case of unbounded values of the Mach numbers, M, , of the approach stream, a conclusion was 
drawn concerning the convexity of the segment of the shock wave which is contiguous to the axis of symmetry 
on which M<M* (Mm)< 1. For example [7], when x = 1.4, the values M* x0.97, 0.88 and 0.60 correspond to 
the values of M, = 1.5, 1.8 and 2.1, respectively. At the same time, all the results in the paper mentioned hold 
for any supersonic values of M, and (Theorems 2-4) are satisfied along the whole of the subsonic section of the 
shock wave. 

3. Let us now consider the circumfluence of a wedge Ogh of finite thickness with a break in the 
generatrix at a point g (Fig. 4). Here, a detached shock wave dz is shown which corresponds to a 
taper angle 8,>0,. However, the results of this section also refer to the narrow range of values of 
O,, , 8, c O. c Ok when an attached shock wave is realized which corresponds to a weak subsonic 
solution. 

Thus, subsonic flow is realized in a certain domain between the wedge and the shock wave. The 
natural question arises regarding the position of the sonic line joining the body and the shock wave. 

We know that the circumfluence of a convex angular point, analogous to point g in Fig. 4, is only 
possible with the formation of a supersonic flow with a local centred rarefaction wave in the 
neighbourhood of the point. Consequently, in the approach along the wall to the angular point, the 

FIG. 4. 
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Mach number reaches a value Mg> 1. In other words, when Mg = 1, the sonic line reaches the 
angular point but, when Mg> 1, its starting point is located to the left. 

In a number of problems involving vortex-free flows such as, for example, in the problem of the 
efflux of a jet from a vessel with rectilinear walls, it has been shown that the sonic line joins the 
terminal points of these walls [g-lo]. These points are angular points for the boundary stream lines. 

We also note that the reasoning regarding the position of the sonic line during the flow around a 
wedge with a break in the generatrix presented in [9] is only valid in the vortex-free approximation, 
which was also pointed out by the editors of the translation of [9]. Hence, the solution of the 
question of the position of the sonic line in the case of a vortex flow which occurs behind a 
curvilinear shock wave is of considerable interest. The following theorem is concerned with this 
question. 

Theorem 5. Let us assume, as in Sec. 2, that the subsonic flow between the wall of the wedge, the 
shock wave and the closing sonic line does not contain any supersonic zones and domains with 
closed stream lines. We shall also assume that the stream function varies monotonically along the 
above-mentioned sonic line, that is, each of the stream lines can only intersect the sonic line once. 

It is asserted that the sonic line which has a continuous supersonic flow adjacent to it on the right 
cannot start to the left of the break point of the contour. 

Proof. Starting out from dimensionality considerations, it is necessary immediately to eliminate 
sonic lines from the treatment which do not fall within the domain of influence of a rarefaction fan 
with focusing of the characteristics belonging to the first family at the point g. Let us therefore 
consider a flow with a sonic line which starts to the left of point g, which the initial characteristic of 
the fan with its centre at point g, Fig. 4, reaches at point f. 

The wedge is a nonconcave body. Hence, Theorems 2 and 3 are applicable to it and it follows 
from this that the pressure does not decrease along d0 and does not increase along dc. The fact that 
there is no decrease in the total pressure po($) along dc also follows from the latter. By taking 
account of the hypothesis that there is no decrease in JI along UC, we obtain that the pressure p also 
does not decrease along the sonic line ac. 

It follows from the foregoing discussion that isobars which emerge from points of UC in the 
subsonic domain can only reach the interval Oa of the wall of the wedge. On the other hand, the 
characteristics of the second family which emerge from points of the interval ag reach the sonic line. 
Finally, by taking account of the fact that the wedge is also a nonconvex body, we find that all the 
conditions of Theorem 1 are satisfied, according to which the flow scheme being considered is 
impossible. Consequently, the theorem is proved. 

So, during the circumfluence of a wedge with a break in the generatrix with a subsonic flow behind 
the shock wave in which the conditions of Theorem 5 are satisfied, the sonic line ac can only emerge 

from the angular point a (Fig. 5). 
2 

FIG. 5. 
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The monotonic change in the pressure along the wall of the wedge is proved in the following 
theorem. 

Theorem 6. Let the conditions of the preceding theorem be satisfied. Then, the pressure does not 
increase along the wall of the wedge from the point of sharpening to the point of the break in the 
contour. 

Proof. Let us assume that the opposite is true. Then, two points with different values ofp but with 
different signs of the normal derivatives p,, on isobars emerging from these points can be chosen on 
the wall. The value of 8 therefore increases along one of the isobars while decreasing along the 
other. Neither isobar can reach the straight wall Oa (Fig. 5). Meanwhile, a situation where both 
isobars reach different points of the contour Odca is precluded. 

The fact is that, as follows from the preceding theorems, the pressure does not increase on passing 
round the given contour in a clockwise direction. Consequently, there are not two points with the 
same pressure values on this contour. The resulting contradiction proves the theorem. 

In concluding, we note that the results which have been obtained may also possibly not answer the 
question as to the existence of subsonic flows between a symmetric body and a shock wave which 
differ from those which have been considered above. However, these results do enable one to assert 
that, if such flows are possible, it only when the assumptions which have been made are not satisfied. 
In other words, either local subsonic zones must exist in the above-mentioned subsonic flows in this 
case, or domains with closed stream lines or which enclose sonic lines along which there is a 
nonmonotonic change in the stream function. 
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